Discovery of a PCAF Bromodomain Chemical Probe
نویسندگان
چکیده
The p300/CBP-associated factor (PCAF) and related GCN5 bromodomain-containing lysine acetyl transferases are members of subfamily I of the bromodomain phylogenetic tree. Iterative cycles of rational inhibitor design and biophysical characterization led to the discovery of the triazolopthalazine-based L-45 (dubbed L-Moses) as the first potent, selective, and cell-active PCAF bromodomain (Brd) inhibitor. Synthesis from readily available (1R,2S)-(-)-norephedrine furnished L-45 in enantiopure form. L-45 was shown to disrupt PCAF-Brd histone H3.3 interaction in cells using a nanoBRET assay, and a co-crystal structure of L-45 with the homologous Brd PfGCN5 from Plasmodium falciparum rationalizes the high selectivity for PCAF and GCN5 bromodomains. Compound L-45 shows no observable cytotoxicity in peripheral blood mononuclear cells (PBMC), good cell-permeability, and metabolic stability in human and mouse liver microsomes, supporting its potential for in vivo use.
منابع مشابه
HIV-1 Tat Binding to PCAF Bromodomain: Structural Determinants from Computational Methods
The binding between the HIV-1 trans-activator of transcription (Tat) and p300/(CREB-binding protein)-associated factor (PCAF) bromodomain is a crucial step in the HIV-1 life cycle. However, the structure of the full length acetylated Tat bound to PCAF has not been yet determined experimentally. Acetylation of Tat residues can play a critical role in enhancing HIV-1 transcriptional activation. H...
متن کاملStructure Enabled Design of BAZ2-ICR, A Chemical Probe Targeting the Bromodomains of BAZ2A and BAZ2B
The bromodomain containing proteins BAZ2A/B play essential roles in chromatin remodeling and regulation of noncoding RNAs. We present the structure based discovery of a potent, selective, and cell active inhibitor 13 (BAZ2-ICR) of the BAZ2A/B bromodomains through rapid optimization of a weakly potent starting point. A key feature of the presented inhibitors is an intramolecular aromatic stackin...
متن کاملHIV-1 Tat Binding to PCAF Bromodomain:
The binding between the HIV-1 trans-activator of transcription (Tat) and p300/(CREB-binding protein)-associated factor (PCAF) bromodomain is a crucial step in the HIV-1 life cycle. However, the structure of the full length acetylated Tat bound to PCAF has not been yet determined experimentally. Acetylation of Tat residues can play a critical role in enhancing HIV-1 transcriptional activation. H...
متن کاملBromodomain and extraterminal domain inhibitors (BETi) for cancer therapy: chemical modulation of chromatin structure.
In cancer, epigenetic proteins are intensely studied targets for therapeutic drug discovery, showing great promise. These proteins include the chromatin-modifying enzymes that "write" and "erase" histone posttranslational modifications (PTM), and those that "read" these marks through binding modules. In an effort to find a compound that could disrupt the protein-protein interactions between a P...
متن کاملStructural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain.
The human immunodeficiency virus type 1 (HIV-1) trans-activator protein Tat stimulates transcription of the integrated HIV-1 genome and promotes viral replication in infected cells. Tat transactivation activity is dependent on lysine acetylation and its association with nuclear histone acetyltransferases p300/CBP (CREB binding protein) and p300/CBP-associated factor (PCAF). Here, we show that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 56 شماره
صفحات -
تاریخ انتشار 2017